Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.544
Filtrar
1.
Chem Rev ; 124(6): 3284-3330, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498932

RESUMO

It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Lipídeos de Membrana/química , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Membranas/metabolismo , Fosfolipídeos/metabolismo , Alcenos/metabolismo
2.
Nature ; 628(8008): 657-663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509367

RESUMO

In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1-3. Studies of human and mouse GSDM pores have revealed the functions and architectures of assemblies comprising 24 to 33 protomers4-9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing more than 50 protomers. We determine a cryo-electron microscopy structure of a Vitiosangium bGSDM in an active 'slinky'-like oligomeric conformation and analyse bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning ß-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.


Assuntos
Gasderminas , Myxococcales , Microscopia Crioeletrônica , Gasderminas/química , Gasderminas/metabolismo , Gasderminas/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Myxococcales/química , Myxococcales/citologia , Myxococcales/ultraestrutura , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise , Piroptose
3.
Molecules ; 29(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398572

RESUMO

Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino's work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.


Assuntos
Lipídeos de Membrana , Receptores Nicotínicos , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Transferência Ressonante de Energia de Fluorescência , Membranas/metabolismo , Receptores Nicotínicos/metabolismo
4.
Colloids Surf B Biointerfaces ; 235: 113765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309153

RESUMO

Transmembrane (TM) proteins interact closely with the surrounding membrane lipids. Lipids in the vicinity of TM proteins were reported to have hindered mobility, which has been associated with lipids being caught up in the rough surface of the TM domains. These reports, however, neglect one important factor that largely influences the membrane behavior - electrostatics of the TM peptides that are usually positively charged at their cytosolic end. Here, we study on the example of a neutral and a positively charged WALP peptide, how the charge of a TM peptide influences the membrane. We investigate both its dynamics and mechanics by: (i) time dependent fluorescent shift in combination with classical and FRET generalized polarization to evaluate the mobility of lipids at short and long-range distance from the peptide, (ii) atomic force microscopy to observe the mechanical stability of the peptide-containing membranes, and (iii) molecular dynamics simulations to analyze the peptide-lipid interactions. We show that both TM peptides lower lipid mobility in their closest surroundings. The peptides cause lateral heterogeneity in lipid mobility, which in turn prevents free lipid rearrangement and lowers the membrane ability to seal ruptures after mechanical indentations. Introduction of a positive charge to the peptide largely enhances these effects, affecting the whole membrane. We thus highlight that unspecific peptide-lipid interactions, especially the electrostatics, should not be overlooked as they have a great impact on the mechanics and dynamics of the whole membrane.


Assuntos
Bicamadas Lipídicas , Peptídeos , Bicamadas Lipídicas/química , Peptídeos/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular
5.
Environ Microbiol Rep ; 16(1): e13232, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308519

RESUMO

Temperature significantly impacts bacterial physiology, metabolism and cell chemistry. In this study, we analysed lipids and the total cellular biochemical profile of 74 fast-growing Antarctic bacteria grown at different temperatures. Fatty acid diversity and temperature-induced alterations aligned with bacterial classification-Gram-groups, phylum, genus and species. Total lipid content, varied from 4% to 19% of cell dry weight, was genus- and species-specific. Most bacteria increased lipid content at lower temperatures. The effect of temperature on the profile was complex and more species-specific, while some common for all bacteria responses were recorded. Gram-negative bacteria adjusted unsaturation and acyl chain length. Gram-positive bacteria adjusted methyl branching (anteiso-/iso-), chain length and unsaturation. Fourier transform infrared spectroscopy analysis revealed Gram-, genus- and species-specific changes in the total cellular biochemical profile triggered by temperature fluctuations. The most significant temperature-related alterations detected on all taxonomy levels were recorded for mixed region 1500-900 cm-1 , specifically the band at 1083 cm-1 related to phosphodiester groups mainly from phospholipids (for Gram-negative bacteria) and teichoic/lipoteichoic acids (for Gram-positive bacteria). Some changes in protein region were detected for a few genera, while the lipid region remained relatively stable despite the temperature fluctuations.


Assuntos
Ácidos Graxos , Lipídeos de Membrana , Temperatura , Lipídeos de Membrana/análise , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Regiões Antárticas , Ácidos Graxos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias Gram-Negativas/genética
6.
Commun Biol ; 6(1): 1111, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919400

RESUMO

We studied diverse prenylated intrinsically disordered regions (PIDRs) of Ras and Rho family small GTPases using long timescale atomistic molecular dynamics simulations in an asymmetric model membrane of phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. Here we show that conformational plasticity is a key determinant of lipid sorting by polybasic PIDRs and provide evidence for lipid sorting based on both headgroup and acyl chain structures. We further show that conformational ensemble-based lipid recognition is generalizable to all polybasic PIDRs, and that the sequence outside the polybasic domain (PBD) modulates the conformational plasticity, bilayer adsorption, and interactions of PIDRs with membrane lipids. Specifically, we find that palmitoylation, the ratio of basic to acidic residues, and the hydrophobic content of the sequence outside the PBD significantly impact the diversity of conformational substates and hence the extent of conformation-dependent lipid interactions. We thus propose that the PBD is required but not sufficient for the full realization of lipid sorting by prenylated PBD-containing membrane anchors, and that the membrane anchor is not only responsible for high affinity membrane binding but also directs the protein to the right target membrane where it participates in lipid sorting.


Assuntos
Bicamadas Lipídicas , Proteínas Monoméricas de Ligação ao GTP , Bicamadas Lipídicas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Conformação Molecular
7.
Soft Matter ; 19(42): 8247-8263, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869970

RESUMO

Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 µM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 µM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 µM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 µM and weakly bound its CM with a Kd of 117.6 µM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Staphylococcus aureus , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/química , Lipídeos de Membrana/química , Antibacterianos/química
8.
Bioessays ; 45(12): e2300116, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37712937

RESUMO

One persistent puzzle in the life sciences is the asymmetric lipid composition of the cellular plasma membrane: while the exoplasmic leaflet is enriched in lipids carrying predominantly saturated fatty acids, the cytoplasmic leaflet hosts preferentially lipids with (poly-)unsaturated fatty acids. Given the high energy requirements necessary for cells to maintain this asymmetry, the question naturally arises regarding its inherent benefits. In this paper, we propose asymmetry to represent a potential solution for harmonizing two conflicting requirements for the plasma membrane: first, the need to build a barrier for the uncontrolled influx or efflux of substances; and second, the need to form a fluid and dynamic two-dimensional substrate for signaling processes. We hence view here the plasma membrane as a composite material, where the exoplasmic leaflet is mainly responsible for the functional integrity of the barrier and the cytoplasmic leaflet for fluidity. We reinforce the validity of the proposed mechanism by presenting quantitative data from the literature, along with multiple examples that bolster our model.


Assuntos
Lipídeos de Membrana , Lipídeos de Membrana/química , Membrana Celular/metabolismo , Transporte Biológico
9.
Artigo em Inglês | MEDLINE | ID: mdl-37643877

RESUMO

The cell membrane, the boundary that separates living cells from their environment, has been the subject of study for over a century. The fluid-mosaic model of Singer and Nicolson in 1972 proposed the plasma membrane as a two-dimensional fluid composed of lipids and proteins. Fifty years hence, advances in biophysical and biochemical tools, particularly optical imaging techniques, have allowed for a better understanding of the physical nature, organization, and composition of cell membranes. This has been made possible by visualizing membrane heterogeneities and their dynamics and appreciating the asymmetrical arrangement of lipids in living cell membranes. Despite these advances, mechanisms underlying the local spatiotemporal organization of membrane components remain unclear. This review surveys various models of membrane organization, culminating in a new model that incorporates nonequilibrium processes and forces exerted by interactions with extramembrane elements such as the actin cytoskeleton. The proposed model provides a comprehensive understanding of membrane organization, taking into account the dynamic nature of the cell membrane and its interactions with its immediate environment.


Assuntos
Lipídeos de Membrana , Proteínas , Lipídeos de Membrana/análise , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membrana Celular/metabolismo , Proteínas/metabolismo , Citoesqueleto de Actina/metabolismo
10.
Sci Rep ; 13(1): 11480, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455299

RESUMO

Following the reaction of biological membranes to external stimuli reveals fundamental insights into cellular function. Here, self-assembled lipid monolayers act as model membranes containing photoswitchable azobenzene glycolipids for investigating structural response during isomerization by combining Langmuir isotherms with X-ray scattering. Controlled in-situ trans/cis photoswitching of the azobenzene N = N double bond alters the DPPC monolayer structure, causing reproducible changes in surface pressure and layer thickness, indicating monolayer reorientation. Interestingly, for monolayers containing azobenzene glycolipids, along with the expected DPPC phase transitions an additional discontinuity is observed. The associated reorintation represents a crossover point, with the surface pressure and layer thickness changing in opposite directions above and below. This is evidence that the azobenzene glycolipids themselves change orientation within the monolayer. Such behaviour suggests that azobenzene glycolipids can act as a bidirectional switch in DPPC monolayers providing a tool to investigate membrane structure-function relationships in depth.


Assuntos
Compostos Azo , Glicolipídeos , Lipídeos de Membrana , Compostos Azo/química , Glicolipídeos/química , Lipídeos de Membrana/química
11.
J Am Soc Mass Spectrom ; 34(9): 1917-1927, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37432128

RESUMO

Native mass spectrometry (nMS) has emerged as a key analytical tool to study the organizational states of proteins and their complexes with both endogenous and exogenous ligands. Specifically, for membrane proteins, it provides a key analytical dimension to determine the identity of bound lipids and to decipher their effects on the observed structural assembly. We recently developed an approach to study membrane proteins directly from intact and tunable lipid membranes where both the biophysical properties of the membrane and its lipid compositions can be customized. Extending this, we use our liposome-nMS platform to decipher the lipid specificity of membrane proteins through their multiorganelle trafficking pathways. To demonstrate this, we used VAMP2 and reconstituted it in the endoplasmic reticulum (ER), Golgi, synaptic vesicle (SV), and plasma membrane (PM) mimicking liposomes. By directly studying VAMP2 from these customized liposomes, we show how the same transmembrane protein can bind to different sets of lipids in different organellar-mimicking membranes. Considering that the cellular trafficking pathway of most eukaryotic integral membrane proteins involves residence in multiple organellar membranes, this study highlights how the lipid-specificity of the same integral membrane protein may change depending on the membrane context. Further, leveraging the capability of the platform to study membrane proteins from liposomes with curated biophysical properties, we show how we can disentangle chemical versus biophysical properties, of individual lipids in regulating membrane protein assembly.


Assuntos
Lipossomos , Lipídeos de Membrana , Lipídeos de Membrana/química , Lipossomos/química , Proteína 2 Associada à Membrana da Vesícula , Espectrometria de Massas
12.
Artigo em Inglês | MEDLINE | ID: mdl-37277191

RESUMO

The number of double bonds in the acyl chains of membrane lipids varies tremendously at all scales of life, from the organism level to the subcellular level, where differences in lipid unsaturation can be observed between two membrane leaflets or between two continuous regions of the same organelle. Here, we review different approaches that have been used to understand the variability in the acyl chain composition of lipid membranes. We suggest that a full understanding of lipid unsaturation is limited not only by technical difficulties but also because some properties afforded by unsaturated lipids in membrane lipids are likely to be subtler than a mere effect on 2D fluidity, notably, the way the position of double bonds in the acyl chains affect the motion of transmembrane proteins, the adsorption of peripheral proteins, or some mechanical properties of the membrane.


Assuntos
Lipídeos de Membrana , Fosfolipídeos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana , Organelas/metabolismo
13.
Phys Chem Chem Phys ; 25(24): 16273-16287, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37305972

RESUMO

Archaeal membrane lipids have specific structures that allow Archaea to withstand extreme conditions of temperature and pressure. In order to understand the molecular parameters that govern such resistance, the synthesis of 1,2-di-O-phytanyl-sn-glycero-3-phosphoinositol (DoPhPI), an archaeal lipid derived from myo-inositol, is reported. Benzyl protected myo-inositol was first prepared and then transformed to phosphodiester derivatives using a phosphoramidite based-coupling reaction with archaeol. Aqueous dispersions of DoPhPI alone or mixed with DoPhPC can be extruded and form small unilamellar vesicles, as detected by DLS. Neutron, SAXS, and solid-state NMR demonstrated that the water dispersions could form a lamellar phase at room temperature that then evolves into cubic and hexagonal phases with increasing temperature. Phytanyl chains were also found to impart remarkable and nearly constant dynamics to the bilayer over wide temperature ranges. All these new properties of archaeal lipids are proposed as providers of plasticity and thus means for the archaeal membrane to resist extreme conditions.


Assuntos
Archaea , Lipídeos de Membrana , Archaea/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Lipídeos de Membrana/química , Inositol
14.
Environ Microbiol ; 25(9): 1644-1658, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37032561

RESUMO

Many Archaea produce membrane-spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy-limited conditions. Recently, the genes encoding GDGT ring synthases, grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance of grs homologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution of grs homologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single-cell and cultivar genomes. The abundance of grs homologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome-assembled genomes (MAGs) that carry two or more grs copies are more abundant in low pH springs. We also find grs in 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role of grs-catalysed lipid cyclization in archaeal diversification across hot and acidic environments.


Assuntos
Fontes Termais , Glicerol , Ciclização , Éteres de Glicerila/química , Archaea/genética , Archaea/química , Lipídeos de Membrana/química , Concentração de Íons de Hidrogênio
15.
Chem Phys Lipids ; 253: 105303, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37061155

RESUMO

Labyrinthopeptins constitute a class of ribosomal synthesized peptides belonging to the type III family of lantibiotics. They exist in different variants and display broad antiviral activities as well as show antiallodynic activity. Although their mechanism of action is not understood, it has been described that Labyrinthopeptins interact with membrane phospholipids modulating its biophysical properties and point out to membrane destabilization as its main point of action. We have used all-atom molecular dynamics to study the location of labyrinthopeptin A2 in a complex membrane as well as the existence of specific interactions with membrane lipids. Our results indicate that labyrinthopeptin A2, maintaining its globular structure, tends to be placed at the membrane interface, mainly between the phosphate atoms of the phospholipids and the oxygen atom of cholesterol modulating the biophysical properties of the membrane lipids. Outstandingly, we have found that labyrinthopeptin A2 tends to be preferentially surrounded by sphingomyelin while excluding cholesterol. The bioactive properties of labyrinthopeptin A2 could be attributed to the specific disorganization of raft domains in the membrane and the concomitant disruption of the overall membrane organization. These results support the improvement of Labyrinthopeptins as therapeutic molecules, opening up new opportunities for future medical advances.


Assuntos
Bacteriocinas , Lipídeos de Membrana , Lipídeos de Membrana/química , Fosfolipídeos/análise , Bacteriocinas/análise , Bacteriocinas/química , Colesterol/química , Microdomínios da Membrana/química
16.
Microbiology (Reading) ; 169(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36952261

RESUMO

Bacteria produce an array of diverse, dynamic and often complex lipid structures, some of which function beyond their typical role in membrane structure. The model organism, E. coli, has three major membrane lipids, which are glycerophosphoglycerol (phosphatidylglycerol), glycerophosphoethanolamine (phosphatidylethanolamine) and cardiolipin. However, it is now appreciated that some bacteria have the capacity to synthesize a range of lipids, including glycerophosphocholines, glycerophosphoinositols, 'phosphorous-free' N-acyl amines, sphingolipids and plasmalogens. In recent years, some of these bacterial lipids have emerged as influential contributors to the microbe-host molecular dialogue. This review outlines our current knowledge of bacterial lipid diversity, with a focus on the membrane lipids of microbiome-associated bacteria that have documented roles as signalling molecules.


Assuntos
Microbioma Gastrointestinal , Lipídeos de Membrana , Lipídeos de Membrana/química , Escherichia coli/genética , Escherichia coli/química , Cardiolipinas
17.
J Mol Biol ; 435(8): 168038, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889459

RESUMO

The human ATP-binding cassette (ABC) transporter ABCA1 plays a critical role in lipid homeostasis as it extracts sterols and phospholipids from the plasma membrane for excretion to the extracellular apolipoprotein A-I and subsequent formation of high-density lipoprotein (HDL) particles. Deleterious mutations of ABCA1 lead to sterol accumulation and are associated with atherosclerosis, poor cardiovascular outcomes, cancer, and Alzheimer's disease. The mechanism by which ABCA1 drives lipid movement is poorly understood, and a unified platform to produce active ABCA1 protein for both functional and structural studies has been missing. In this work, we established a stable expression system for both a human cell-based sterol export assay and protein purification for in vitro biochemical and structural studies. ABCA1 produced in this system was active in sterol export and displayed enhanced ATPase activity after reconstitution into a lipid bilayer. Our single-particle cryo-EM study of ABCA1 in nanodiscs showed protein induced membrane curvature, revealed multiple distinct conformations, and generated a structure of nanodisc-embedded ABCA1 at 4.0-Å resolution representing a previously unknown conformation. Comparison of different ABCA1 structures and molecular dynamics simulations demonstrates both concerted domain movements and conformational variations within each domain. Taken together, our platform for producing and characterizing ABCA1 in a lipid membrane enabled us to gain important mechanistic and structural insights and paves the way for investigating modulators that target the functions of ABCA1.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Membrana Celular , Lipídeos de Membrana , Imagem Individual de Molécula , Esteróis , Humanos , Apolipoproteína A-I/metabolismo , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membrana Celular/química , Fosfolipídeos/química , Esteróis/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Mutação , Bicamadas Lipídicas/química , Imagem Individual de Molécula/métodos
18.
Biochim Biophys Acta Biomembr ; 1865(4): 184135, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746313

RESUMO

The Fluid-Mosaic Membrane (FMM) model was originally proposed as a general, nanometer-scale representation of cell membranes (Singer and Nicolson, 1972). The FMM model was based on some general principles, such as thermodynamic considerations, intercalation of globular proteins into a lipid bilayer, independent protein and lipid dynamics, cooperativity and other characteristics. Other models had trimolecular structures or membrane globular lipoprotein units. These latter models were flawed, because they did not allow autonomous lipids, membrane domains or discrete lateral dynamics. The FMM model was also consistent with membrane asymmetry, cis- and trans-membrane linkages and associations of membrane components into multi-molecular complexes and domains. It has remained useful for explaining the basic organizational principles and properties of various biological membranes. New information has been added, such as membrane-associated cytoskeletal assemblies, extracellular matrix interactions, transmembrane controls, specialized lipid-protein domains that differ in compositions, rotational and lateral mobilities, lifetimes, functions, and other characteristics. The presence of dense, structured membrane domains has reduced significantly the extent of fluid-lipid membrane areas, and the FMM model is now considered to be more mosaic and dense than the original proposal.


Assuntos
Lipídeos de Membrana , Proteínas de Membrana , Lipídeos de Membrana/química , Proteínas de Membrana/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Matriz Extracelular
19.
Curr Opin Struct Biol ; 79: 102560, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848776

RESUMO

G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs.


Assuntos
Regulação Alostérica , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G , Animais , Humanos , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Conformação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura
20.
mSystems ; 8(1): e0069922, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36598240

RESUMO

Tolerance of Mycobacterium tuberculosis to antibiotics contributes to the long duration of tuberculosis (TB) treatment and the emergence of drug-resistant strains. M. tuberculosis drug tolerance is induced by nutrient restriction, but the genetic determinants that promote antibiotic tolerance triggered by nutrient limitation have not been comprehensively identified. Here, we show that M. tuberculosis requires production of the outer membrane lipid phthiocerol dimycocerosate (PDIM) to tolerate antibiotics under nutrient-limited conditions. We developed an arrayed transposon (Tn) mutant library in M. tuberculosis Erdman and used orthogonal pooling and transposon sequencing (Tn-seq) to map the locations of individual mutants in the library. We screened a subset of the library (~1,000 mutants) by Tn-seq and identified 32 and 102 Tn mutants with altered tolerance to antibiotics under stationary-phase and phosphate-starved conditions, respectively. Two mutants recovered from the arrayed library, ppgK::Tn and clpS::Tn, showed increased susceptibility to two different drug combinations under both nutrient-limited conditions, but their phenotypes were not complemented by the Tn-disrupted gene. Whole-genome sequencing revealed single nucleotide polymorphisms in both the ppgK::Tn and clpS::Tn mutants that prevented PDIM production. Complementation of the clpS::Tn ppsD Q291* mutant with ppsD restored PDIM production and antibiotic tolerance, demonstrating that loss of PDIM sensitized M. tuberculosis to antibiotics. Our data suggest that drugs targeting production of PDIM, a critical M. tuberculosis virulence determinant, have the potential to enhance the efficacy of existing antibiotics, thereby shortening TB treatment and limiting development of drug resistance. IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of active TB disease and over 1 million deaths worldwide each year. TB treatment is complex, requiring at least 6 months of therapy with a combination of antibiotics. One factor that contributes to the length of TB treatment is M. tuberculosis phenotypic antibiotic tolerance, which allows the bacteria to survive prolonged drug exposure even in the absence of genetic mutations causing drug resistance. Here, we report a genetic screen to identify M. tuberculosis genes that promote drug tolerance during nutrient starvation. Our study revealed the outer membrane lipid phthiocerol dimycocerosate (PDIM) as a key determinant of M. tuberculosis antibiotic tolerance triggered by nutrient starvation. Our study implicates PDIM synthesis as a potential target for development of new TB drugs that would sensitize M. tuberculosis to existing antibiotics to shorten TB treatment.


Assuntos
Farmacorresistência Bacteriana , Lipídeos de Membrana , Mycobacterium tuberculosis , Humanos , Lipídeos de Membrana/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...